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1 Introduction

Stroke is the third leading cause of death and fourth leading cause of disability worldwide according

to the latest Global Burden of Disease (GBD) estimates [1], representing 7.25 million deaths and

over 160 million disability-adjusted life-years (DALYs) in 2021 [1, 2]. A stroke is characterised by

an interruption of blood flow to areas of the brain caused by vessel occlusion (ischaemic stroke) or

rupture (haemorrhagic stroke) [3]; the extent of resulting cellular death determines the degree of

severity and subsequent disability or death [4, 5]. Ischaemic stroke generally accounts for a higher

proportion of stroke incidences with estimates of 62% globally [6], however this has been shown to

vary across regions of the world [7].

The age-standardised mortality and DALY rate for stroke has substantially decreased between 1990

and 2021 which contributed to increased life expectancy worldwide [1, 2]. Despite this, during the

same period there was evidence of increasing burden as absolute numbers of deaths and DALYs

from stroke increased dramatically which has been attributed to population growth, ageing and

increasing exposure to risk factors [6]. It is predicted that the number of deaths and DALYs from

stroke will continue to increase by as much as 50% and 30% respectively by 2050 [8], primarily

driven by low and middle-income countries (LMICs) where already over 80% of global stroke bur-

den is experienced [6].

The aggregate economic burden of stroke (incorporating direct and indirect costs) was estimated at

$891 billion in 2017, representing 1.12% of global gross domestic product (GDP) [9, 10]. In high-

income countries (HICs) such as the United States, Canada and those within Europe, the mean per

patient per year (direct and indirect) cost of stroke was $27,702 in 2020 [11]. This has been found to

be much lower but widely variable in LMICs due to availability of rehabilitation services and with

a higher proportion of out-of-pocket expenditure [12]. Due to the high morbidity associated with

stroke, the long-term costs attributed to disability and lost productivity are comparable to direct

costs from healthcare as post-stroke survival improves [13]. It is predicted that by 2050 the global
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economic burden could have risen to as much as $2.31 trillion in 2017 prices [8]. The predicted

growth in global burden of stroke threatens to further increase the already vast economic impact

and presents an an even greater challenge for LMICs which may have limited capacity to sufficiently

resource health and social care [14].

Given the substantial and growing health and economic burden, the prevention of stroke is seen as

a global public health priority [9, 15]. The United Nations (UN) Sustainable Development Goal

(SDG) 3.4 aims to reduce premature mortality from non-communicable diseases (NCD) such as

stroke by one third between 2015 and 2030 through investments in further prevention and treat-

ment [16]. However, there has been insufficient progress towards achieving this goal, particularly in

LMICs [17], leading to calls for resource-effective scalable approaches for surveillance and primary

prevention [8, 17].

There are two predominant strategies for stroke prevention; population-based and high-risk [18].

Population-based approaches often utilise primordial stroke prevention which aims to target the

underlying social and environmental determinants of disease before risk factors emerge [19]. This

approach often requires engaging health systems and implementing policy to avert a populations

exposure to risk factors for stroke completely [18, 19]. High-risk stroke prevention strategies tend to

encompass primary prevention whereby risk factors are already present and the focus is identifica-

tion of individuals at a higher risk of stroke followed by modification of these factors [15, 19, 20]. For

example, this could include identification of patients at a higher risk of stroke using early detection

and management of risk factors at the patient-level using routine healthcare records [8].

There are a number of established non-modifiable and modifiable risk factors for stroke [21, 22].

Stroke incidence is known to increase with age [23] doubling with each decade beyond the age of

55 for both sexes [21, 24]. There is evidence of an interaction between age and sex [25]; stroke

incidence is higher in females at <30 years of age [26] which may be attributed to the higher stroke

risks associated with pregnancy [27] whilst in mid-life, males have a greater relative risk of stroke
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[28]. A multinational case-control study (INTERSTROKE) found that 90% of the risk of stroke

could be attributed to ten modifiable risk factors including hypertension, current smoking, diabetes,

heart disease and obesity amongst others [7]. This aligns with more recent GBD estimates with

the top five risk factors identified as high systolic blood pressure (hypertension), body-mass index

(BMI), fasting blood glucose (diabetes), pollution and smoking [6] and is consistent within LMICs

[18]. Identification and management of these risk factors is key to preventing stroke and provides

an opportunity for early intervention [1, 6, 29].

Predicting stroke risk based on risk factors has been recognised as a method for high-risk strategy

primary prevention [30–32]. Conventional statistical-based scoring methods such as the Framing-

ham stroke risk score [30] and more recently QStroke [33] have been used to stratify and identify

risk at the patient-level. However, statistical regression-based model limitations, namely linearity

assumptions [34] which can oversimplify complex relationships between predictors [32], have led to

the growth of machine learning (ML) methods for predicting stroke and stroke outcomes [35, 36].

Supervised ML generally involves iteratively “training” computational algorithms using a labelled

training dataset where the outcome label (classification) or real-value (regression) is known in order

to generate a function that maps inputs to outputs [37, 38]. Using feature importance and accu-

mulated local effects plots [39], these methods can also provide insight into which features (health

and lifestyle factors) have most contributed to the stroke predictions [40].

There is an extensive literature on the use of machine learning methods for stroke risk prediction

using routinely collected patient-level information [41]. Sharma et al[42] used 10 features including

demographic (age and sex), lifestyle (smoking status, marital status, urban/rural area and occupa-

tion sector) and clinical (hypertension, heart disease, average blood glucose and BMI) attributes

to predict the risk of stroke occurrence as a binary classification problem. Comparing five ML

classifiers they found that random forest, an ensemble method, provided the best performance for

classifying the occurrence of stroke [42], consistent with other findings utilising the same dataset

[43–48].
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Despite this, there is some evidence to suggest support vector machines may best classify stroke

occurrence using the aforementioned dataset, even whilst comparing directly with random forest

algorithms [49, 50]. Similarly effective classification performance has been achieved using other

ensemble methods aside from random forests including stacking [51], where the output of multi-

ple base classifiers are combined by a meta-classifier for final classification [52]. This method has

been shown to outperform many single classifier models in the prediction of stroke occurrence as a

binary classification problem [51, 53–55]. Using an ensemble stacking algorithm, Hassan et al[55]

also calculated feature importance scores and found age, average blood glucose, BMI, heart dis-

ease, hypertension and marital status were the most influential in the prediction of stroke. This is

consistent within the established ML literature utilising this dataset [54, 56, 57] and presents an

opportunity to highlight modifiable risk factors for preventative action [21].

Therefore, there remains uncertainty in the literature around the most effective ML method for

stroke prediction using routinely collected demographic, lifestyle and clinical features [55]. This

project will aim to add to the body of evidence by further comparing ML classifiers in order to de-

termine the most effective means of predicting stroke occurrence using readily available patient-level

information. The resulting predictive models will be used to corroborate previous findings on the

most influential risk factors that contribute to predicted stroke occurrence. Further, accumulated

local profiles will be used to explore how changes in these features influence the predicted risk of

stroke on average [39]. A successful model may provide accurate decision support for clinicians in

identifying patients at higher risk and provide an opportunity for early intervention in managing

risk factors, reducing more serious health and economic consequences [8, 29].

4



2 Methods

The following section will detail the methods used to create a predictive ML model for binary clas-

sification of stroke occurrence. This will include a description of the dataset used in the analysis

followed by data exploration and preprocessing in order to facilitate modelling using ML classi-

fiers. An overview of each ML algorithm will be provided followed by details of corresponding

hyperparameters utilised in model tuning. Model implementation and comparison methods (using

appropriate evaluation metrics) amongst candidate models will be described. Finally, model selec-

tion and assessment methods will be detailed and model interpretation explored, including feature

importance and accumulated local effects.

All data processing and analyses were completed using R version 4.4.0 [58]. The tidymodels meta-

package and ecosystem [59] was used for all data preprocessing and modelling.

2.1 Data description

The dataset was open-access data sourced from Kaggle [60] and consisted of 4,981 observations of

anonymised electronic health care records (EHR) [61]. The dataset had already undergone pro-

cessing however the extent and type of processing applied was unknown. Therefore as the data

source was also unknown a number of assumptions about the dataset were made. For the purposes

of this analyses, as there were no unique identifiers present, it was assumed that each observation

represented a unique patient. The outcome and focus of this classification problem was a binary

categorical variable stroke which indicated if a stroke had occurred or not for each patient. The

stroke outcome was assumed to have been collected as a follow up to collection of various features

therefore the dataset could be used to build a predictive model for stroke occurrence as a future

outcome.

The dataset comprised of ten features linked to demographic, lifestyle and clinical information.

These included age (years), gender, smoking status, marital status, urban/rural residence, occu-
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pation sector, hypertension, heart disease, average blood glucose (mg/dL) and BMI (kg/m2). All

features were defined as categorical nominal data except for age, average blood glucose and BMI

which were numerical continuous. The binary features “hypertension” and “heart disease” were

assumed to represent whether the patient had these diseases at the point of follow-up. Similarly,

“average blood glucose” and “BMI” were assumed to have been collected over a number of appoint-

ments.

2.2 Data exploration

Initial exploratory analysis was conducted using descriptive statistics and visualisations to sum-

marise and contextualise the dataset [62] prior to modelling for stroke prediction. Univariate

distributions of each variable were assessed for erroneous values, missing data and outliers us-

ing summaries and visualising distributions. Density plots were used to inspect the distributions of

continuous variables whilst cross-tables were used for examining each categorical variable includ-

ing the outcome. This assisted in establishing symmetry or skew in continuous features for which

transformation may later be required in pre-processing for some ML algorithms through a process

of scaling and normalisation [63]. Univariate methods also provided the event rate for the binary

outcome of stroke occurrence, providing class distribution information to inform subsequent sub-

sampling methods in the case of class imbalance [64, 65].

Bivariate and multivariate visualisations were also used to assess patterns and relationships between

features and the binary outcome. Density plots were used to visualise the relationship between con-

tinuous features and the outcome whilst cross-tables described the relationship between categorical

variables and the outcome. This aided in identifying the features that appeared to be the most

informative for the prediction of stroke occurrence as a binary outcome by examining dependency.

Similarly, relationships between numeric features were also explored using correlation matrices and

scatter plots to identify multicollinearity amongst the predictors which could indicate redundant

information [66], and even introduce instability in some ML methods [67].
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2.3 Data preprocessing

The dataset was initially split into a training and test set using the initial_split function from

the rsample package [68], utilising a stratified approach to ensure equal proportions of the binary

stroke occurrence outcome in both sets [69]. The training set consisted of 80% of the dataset and

was used to tune and fit the parameters of classifiers followed by model selection [70]. The test set

consisted of the remaining 20% of the dataset and aimed to provide an unbiased estimate of model

performance to indicate generalisability [70, 71].

Preprocessing was implemented using the tidymodels framework which allowed all steps to be ap-

plied to both training and test datasets via the recipes package [72]. The exception to this was

subsampling which was only applied to the training set as default, including within cross-validation,

so as to avoid bias [73].

Transformations are particularly important for parametric ML methods where the tails of skewed

distributions can negatively impact the models ability to classify more typical cases [74]. Tree-based

methods are less sensitive to skewed distributions and outliers as these algorithms utilise rank as

opposed to the value of the predictor [75, 76]. Continuous features that demonstrated a skewed

univariate distribution were transformed by applying an appropriation of the Box-Cox transforma-

tion [77] using the recipes::step_BoxCox function in order to approximate a more symmetrical

distribution.

Many ML methods require all features to be numeric [78, 79], therefore where appropriate, cate-

gorical predictors were encoded using the recipes::step_dummy function which utilises a dummy

encoding method [80]. A full rank parameterisation is used, whereby numeric binary dummy vari-

ables are generated representing all but the first factor level which is used as the reference cell

[80, 81]. Again, tree-based algorithms are more robust in this way due to splitting methods, there-

fore can handle categorical data and do not require this step of preprocessing [82, 83].
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Feature normalisation was implemented using the recipes::step_normalize function. Normali-

sation involves centering and scaling numeric predictors so that they have a mean of zero and a unit

variance [84, 85]. This is utilised when the scale of numeric features vary by orders of magnitude

and therefore features with larger values may disproportionately impact predictions, particularly

for those ML algorithms that use distance calculations [86]. There is also evidence that gradient de-

scent, the process by which algorithms are optimised [87], convergences to a minima at a faster rate

following normalisation of inputs [88]. As before, tree-based algorithms are invariant to monotonic

transformations of features due to splits based on order as opposed to absolute value of a feature

[89].

In the case of an imbalanced dataset (i.e. a class imbalance in the stroke outcome), with fewer

instances of stroke occurrence than non-occurrence, Synthetic Minority Over-sampling Technique

(SMOTE) was used [90] to generate new observations of stroke occurrence and create an equal

proportion of classes. This was achieved using the step_smote function from the themis pack-

age [91] and applied exclusively to training sets including within resampling of training data using

cross-validation so as to never apply it to any validation data. Imbalanced data presents a chal-

lenge for classification models and performance evaluation using accuracy metrics as misleadingly

high predictive accuracy can occur by only predicting the majority class due to a low event-rate

of the minority class [92, 93]. SMOTE employs oversampling of the minority class which has been

shown to achieve better classifier performance in binary classification problems than conventional

undersampling of the majority class in some instances [90]. New synthetic samples of the minority

class (in this case; stroke occurrence) are generated via a k-nearest neighbour method (using k =

5 as default) whereby novel examples are created along line segments that join the neighbours of a

randomly selected data point in the feature space [90].
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2.4 Machine learning models

The primary motivation for this project was to build a predictive model for the classification of

stroke occurrence as a binary outcome using readily available patient-level information. According

to the ‘no free lunch theorem’ [94] there is no universal best ML algorithm for predictive modelling

problems in supervised ML; consequently, it is typical to compare many ML algorithms in order to

evaluate and select the optimal approach for each specific problem [95]. This project will therefore

compare four ML algorithms including artificial neural networks, support vector machines, gradient-

boosted decision trees and random forest. The following section provides an overview of each ML

algorithm selected for constructing classification models to predict stroke occurrence.

2.4.1 Artificial neural networks

Artificial neural networks (ANNs) are computational models that were first inspired by biological

neurons in the human brain [96] and offer a flexible mathematical approach to nonlinear statistical

modelling [97]. The following section describes a commonly used ANN known as a multi-layer per-

ceptron (MLP), which was implemented as a single hidden layer neural network using the brulee

package [98]. MLPs require encoding of categorical predictors for numeric input [78] and scaling

and normalisation to account for scale factors [63].

An MLP model consists of an input layer, one or more intermediate hidden layers and an output

layer, each with nodes that are fully connected to nodes in previous and subsequent layers [99]. This

algorithm is also a form of feed-forward network whereby information flows successively through

hidden layers initiated from the input layer and terminating at the output layer with predictions of

the target features [100]. The input layer simply consists of the features or predictor variables in

the dataset [101]. Information moves through the feed-forward topology by using the outputs from

previous layers as inputs for the next until the outcome layer is reached [102].

MLPs are highly parameterised models; each connection between nodes has an associated weight
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and bias parameter which are linearly combined to outputs from previous nodes before becoming

the input to the subsequent node [103]. These inputs are then transformed to finite values at hidden

nodes within the hidden layers using activation functions which provide a threshold at which the

node to continue to signal to another node [102]. The output of these transformations then feed

into subsequent hidden nodes or output nodes to model the output [104]. The nonlinearity of the

model and its ability to fit to complex interactions is due to the transformation of inputs via the

activation function (see section 2.5.1) [105].

In order to train an MLP model the weight and bias parameters are estimated through an optimi-

sation process called backpropagation which seeks to minimise the loss function by gradient descent

[106]. In classification problems, the loss function is typically cross-entropy which is a measure of

the difference between two probability distributions [107]. The algorithm involves a forward pass

with randomly selected parameters before predicting the output and estimating the error using the

loss function [108]. The gradient of the error is propagated back to earlier layers in the network

to update the weights in the opposite direction to the gradient [106]. Once all training data has

contributed to the updating of the parameters in the forward and backward pass this is known as

an epoch (see section 2.5.1) [109].

2.4.2 Support vector machines

Support vector machines (SVMs) are machine learning models that can be used for linear and non-

linear binary classification by using a hyperplane to separate classes [110]. For this classification

problem, SVM was implemented using the kernlab package [111]. SVMs also require encoding

of categorical predictors [112] and scaling and normalisation for differing magnitudes of predictors

[63].

A hyperplane represents a decision boundary for separating classes however many possible bound-

aries could be used; SVM finds an optimal hyperplane based on maximising the margin as a con-

strained optimisation problem [113]. The margin is the distance between the hyperplane and the
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closest observations (support vectors) of either class and the margin boundaries can be defined by

these support vectors which in turn dictate the hyperplane [114]. This conceptual solution allows

an optimal separating hyperplane to be found that generalises well in linearly separable data [115].

However, as data is rarely perfectly linearly separable and maximal margin classifiers are sensitive

to outliers, SVM often allows the violation of constraints [116]. For greater generalisability, a soft

margin can be created using slack variables to allow misclassification by permitting observations

on the incorrect side of the hyperplane whilst still maximising the margin [117]. If the cost (see

section 2.5.2) of misclassification is high then there will more of a hard margin (strict), whereas if

it is lower the margin will allow more misclassified observations [106].

The advantage of SVM over conventional linear classifiers lies in its ability to classify nonlineary

separable data using the kernel trick [118]. Using kernel functions (see section 2.5.2) , the input data

can be mapped to a higher dimensional feature space which then allows SVM to create a separating

hyperplane [119]. The linear hyperplane implemented in the higher dimensional feature space can

then be used in the original feature space where it can act as a nonlinear decision boundary to

classify observations [116]. The kernel trick is computationally efficient, even whilst operating in an

infinite dimensional space, as it engages in this feature mapping without requiring transformation

of features [120]. SVMs are known for their flexibility in nonlinearly separable data and generation

of smooth boundaries through this process, making them a favourable machine learning algorithm

in many binary classification problems [106].

2.4.3 Gradient-boosted decision trees

Gradient-boosted decision trees (GBDT) are an ensemble ML technique whereby successive decision

trees, as weak learners, are combined to build a more accurate predictor [121]. The following section

describes a popular GBDT algorithm, XGBoost which uses regularisation to account for model com-

plexity and prevent overfitting [122]. This was was implemented using the xgboost package [123].

XGBoost is a tree-based method therefore does not require scaling or normalisation of predictors
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[89] however encoding is required for categorical predictors for this specific algorithm [124].

XGBoost uses decision trees as base learners in the ensemble model [122]; decision trees are hierar-

chical non-parametric algorithms that use recursive partitioning to split the data based on features

in a way that maximises homogeneity of subsets after each split [125]. This forms a tree-like struc-

ture from the first split of all training data at the root node, to further splits at internal nodes

before terminating at the leaf nodes [126]. The leaf nodes hold the product of all previous splits

encapsulating a decision rule which can then be used for prediction [127]. Subdivision of nodes is

typically based on binary splits where branches represent the outcomes and connections from these

root or internal node splits [75]. The aim of each split is to minimise heterogeneity [128] in the

resulting partitioned data and this is also used in order to select which feature is optimal for the

first split at the root node [129]. As decision trees can be prone to overfitting [130], early stopping

rules [131] or pruning [132] can be used to improve generalisability (see section 2.5.3).

Individual decision trees are known to produce relatively unstable predictions in response to small

changes in the training data however combining trees in an ensemble approach such as boosting

can make predictions more reliable [133]. Boosting begins with a shallow (few splits) decision tree

that typically has high bias and low variance making it a weak learner [134, 135]. A loss function

is minimised using gradient descent optimisation and provides the residuals which are then used

to fit the next tree; this continues sequentially, combining trees that are optimised to predict the

residuals from the previous tree [122]. This gradient boosting process results in each iteration of the

model providing better prediction performance than the last by combining weak learners into an

ensemble [136]. GBDTs such as XGBoost are non-parametric tree-based methods, therefore they

can handle mixed data types and do not require feature transformations [137].

2.4.4 Random forest

Random forests (RF) are another ensemble ML approach that utilises bootstrapping and aggrega-

tion of decision trees in a process known as bagging [138] whilst also reducing correlation between
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base learners to produce a strong predictive model [139]. For this classification problem, RF was

implemented using the ranger package [140]. RF, as a tree-based method, does not require encod-

ing for categorical predictors [82] and is also invariant to monotonic transformations of predictors

therefore no scaling or normalisation of predictors is required [89].

As with XGBoost, the base learners for RF are decision trees which are typically unbiased but high

variance models for which ensemble methods such as bagging work especially well [141]. The bagging

process involves creating many individual decision trees using random subsets of the training data

with replacement through a process of bootstrapping [142]. RF aims to create a diverse array of

trees to reduce correlation and improve predictive performance therefore additional to bootstrapped

samples, a random subset of features are used to build decision tree nodes at each step in a given

tree (see section 2.5.4) [141]. This is repeated many times to create identically distributed trees

each of which provides a prediction before being aggregated either by averaging (regression) or by

voting as a committee of trees (classification) [139].

RF algorithms can demonstrate impressive predictive performance even with minimal or no hyper-

parameter tuning [143, 144] and as a tree-based method is invariable to feature transformations

[145] and mixed-data types [146].

2.5 Hyperparameter tuning

ML algorithms have hyperparameters which are parameters that cannot be estimated from the

learning process itself [147]. Hyperparameters are customisable and specified on configuration of

each model allowing model adaptation to to suit the relevant dataset properties and ML problem

[148]. It can be challenging to know prior to modelling which hyperparameter values will bring

about optimal model performance therefore it is common practice for tuning strategies to be used,

where various hyperparameter values and combinations are compared [147].

Hyperparameter tuning was completed within the tidymodels ecosystem [59]. The training set was
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used throughout the tuning and model selection process with the test set reserved for final model

evaluation [70]. Further, ten-fold cross-validation was implemented using the rsample::vfold_cv

function [68] on the training dataset, stratified on the stroke outcome variable to ensure equal pro-

portions across folds. K-fold cross-validation was used in tuning to characterise and compare model

performance when estimating hyperparameters in order to provide a more reliable performance

estimate [149]. Resampling methods such as cross-validation can indicate how well models may

perform on unseen data and therefore prevent overfitting [80].

Despite existing heuristics and understanding of the non-specific impact of hyperparameters on

model performance [150], a more objective approach utilises a defined search space for various val-

ues of each hyperparameter in combination [148]. One such method is grid search where this search

space is defined by pre-specified finite subsets of hyperparameter values in combination which are

all systematically and exhaustively evaluated [151]. Space-filling designs such as those employing

Latin hypercube sampling can generate near-random sequences of hyperparameter values which

may cover the search space more evenly with less chance of overlap and redundancy [152]. To im-

plement this space-filling design for grid-search, the dials::grid_latin_hypercube function [153]

was used with 50 candidate parameter sets for each algorithm.

Racing methods can be used to accelerate the grid-tuning process; instead of all models being

fit to all folds of training data, racing methods fit and evaluate after an initial subset of folds in

order to discard clearly inferior models [154, 155]. From this process, optimal values and combi-

nations of hyperparameter candidates are efficiently identified based on performance metrics. A

racing method for hyperparameter tuning was implemented for all models in this project using the

finetune::tune_race_anova function [156].

The following section outlines the relevant hyperparameters and tuning considerations for each ML

method used in the process of hyperparameter optimisation.
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2.5.1 Artificial neural networks

Number of hidden nodes As a single hidden layer MLP was used, the number of hidden nodes

determines the number of parameters and therefore the capacity of the model [157]. A greater

number of hidden nodes may allow the model to learn more complex patterns in the data but also

presents a risk of overfitting with increasing numbers of parameters [158]. It is common to prioritise

a larger number of hidden units whilst relying more on regularisation to prevent overfitting for

MLP models [141, 159]. The optimal number of hidden nodes will depend on context however as

a heuristic principle, 75% of the number of input nodes has been widely used [160]. Therefore, a

range inclusive of this can provide a starting point for tuning.

Weight decay Weight decay is a regularisation method that prevents overfitting by controlling

the magnitude of the coefficient (weight) parameters in the MLP model [161]. The penalty for

larger weights is incorporated into the loss function and reasonable values are generally between 0

and 0.1 [147].

Dropout Dropout is another method of regularisation again used to prevent overfitting by ef-

fectively combining multiple neural network structures during training [162]. It aims to create

independent representations of the data to be learned in order to become less vulnerable to any spe-

cific weights within the network. Nodes and associated connections are randomly dropped during

training to prevent these co-adaptations or dependencies, which in turn improves generalisability

[162]. The range of this hyperparameter is bound between 0 and 1 as it represents the proportion

of model parameters that are nullified whilst training the model. Both weight decay and dropout

cannot be used within the mlp function [98], therefore dropout was used [163].

Epochs Every training example contributes to the updating of model weights and biases within a

single epoch via a forward and backward pass [164]. Greater numbers of epochs may be required for

increasing numbers of features and complex interactions in the data [106] however a large number of

epochs can induce overfitting [165]. The default range of 10 to 1000 epochs was used in tuning with
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attention paid to increases in validation error that may indicate overfitting with a greater number

of epochs [148].

Activation function The activation function of a node is responsible for transforming inputs

and weights to produce an output of a known range often introducing nonlinearity [105]. There

are a number of activation functions, each with different mathematical processes; often the same

activation function is used across all nodes in an MLP model [166]. For binary classification problems

a sigmoid function is generally used in the output layer as it offers a probability interpretation [106]

and there is some evidence that this function can also be effective in hidden layers [167]. Therefore,

a sigmoid activation function was applied in this project for modelling stroke occurrence.

Learning rate The learning rate determines the extent to which weights update during back-

propagation using loss minimisation in gradient descent [168]. If the learning rate is reduced,

smaller incremental “steps” will be taken towards minima of the loss function therefore training will

take longer to converge however if learning rate is larger it is possible to overshoot minima [169].

Typically, learning rates between 0 and 1 can aid in preventing overshooting [170].

2.5.2 Support vector machines

Kernel function Many kernel functions can be selected to map the input data to a higher

dimensional feature space allowing SVM to create a nonlinear separating hyperplane [171]. The

radial basis kernel is a popular function that maps input data to an infinite-dimensional feature

space [172] and has been used in many binary classification health applications [173–175]. This

kernel and associated parameters were used to implement the SVM model.

Cost The cost dictates the extent of the soft-margin, allowing misclassification of observations

and making SVMs more robust to outliers [176]. Although there is some evidence the cost parame-

ter demonstrates poor tunability [144], some tuning recommendations comprise of searching using

exponentially growing sequences of cost for example between a range of 2−5 and 215 [112] which

was implemented for the SVM model.
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Kernel function bandwidth The bandwidth (σ) determines the degree of non-linearity of the

decision boundary [177]. Smaller values of σ will create a strict decision boundary and presents a

risk of overfitting, whilst larger values can lead to smoother boundaries and greater misclassification

[178]. Exponentially growing sequences of σ between a range of 2−15 and 23 [112] can be used as a

starting point for tuning.

2.5.3 Gradient-boosted decision trees

Number of randomly sampled predictors Feature subsampling, the same technique used in

RF algorithms, can be implemented in XGBoost; this tuning hyperparameter specifies the number

of predictors that are randomly sampled (mtry) at each split [179]. Subsampling in this way decor-

relates trees which can make the model more resilient to overfitting and decreases computation time

[122]. This was tuned using a range of 1 to the total number of predictors in the dataset.

Number of trees The total number of trees in the boosting ensemble presents more of a risk

of overfitting compared to bagging ensembles as they are sequential, using residuals from previous

trees as a starting point [106]. It is generally recommended to include as many as 1000 trees in

the tuning range [137], therefore the default hyperparameter range of between 1 and 2000 trees was

used.

Minimum node size Minimum node size acts as a form of stopping criterion as it defines the

minimum number of examples in a node before further splits [180]. In this way it sets the depth of

tree as setting larger values leads to fewer splits and therefore less tree depth. Conversely, smaller

values can create more complex trees and therefore increase the risk of overfitting [106]. The default

range of 2 to 40 was used in tuning.

Maximum tree depth Similar to minimum node size, the tree depth hyperparameter controls

tree complexity by defining the number of splits [106, 181]. A greater number of splits provides more

flexibility allowing the tree to capture more complex interactions but also makes the model more
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prone to overfitting [182]. A tree depth of between 4 and 8 is typically adequate [141], therefore the

default range of 1 to 15 was used for this hyperparameter during tuning.

Learning rate Often referred to as the shrinkage parameter, the learning rate is a form of regu-

larisation that scales the contribution of each tree and therefore the rate of gradient descent [183].

Smaller values can prevent overfitting by reducing the impact of any individual tree and subse-

quently allowing a greater number of trees to be incorporated into the ensemble [122]. A learning

rate between 0.001 and 0.3 are often used [106] therefore the upper bound of the default range

(10−10 to 10−1) was extended to incorporate this.

Loss reduction Loss reduction (γ) is another method of regularisation that defines a minimum

reduction in loss function in order for further splits of a leaf node in a tree [122]. Larger values of

γ means a higher degree of regularisation whilst smaller values allow greater numbers of splits and

increased likelihood of overfitting [106]. The default range of 10−10 to 101.5 was used for tuning γ.

Sample size The sample size hyperparameter defines the proportion of training examples sub-

sampled wihtout replacement before growing each decision tree in the ensemble at each iteration

[122]. Not only can this method make computation time faster, it also introduces randomness that

can further improve generalisability and prevent overfitting [184]. Typical values are often between

50% and 80% of the training data [106, 137] which was used as a range for tuning.

Early stopping Early stopping is implemented by specifying the number of iterations or trees

where no performance improvement is observed before stopping the algorithm [185]. It can inform

the selection of the optimal number of trees before overfitting occurs, improving efficiency of the

model [186]. The default range of 3 to 20 iterations was used for tuning.

2.5.4 Random forest

RF has been found to be less sensitive to hyperparameter tuning compared to many other ML

methods [143] and can often perform well with default hyperparameter settings [106]. However,
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this is likely to vary based on the number of features and size of datasets [187] therefore tuning was

conducted using a number of parameters.

Number of randomly sampled predictors As in XGBoost, feature subsampling can be

implemented by specifying the number of predictors that are randomly sampled (mtry) at each

split [188]. Introducing randomness in this way decorrelates trees and provides more stability in

the ensemble, preventing overfitting [143]. For classification problems, mtry as √
p where p is the

number of predictors is often default and has been recommended in the literature as a heuristic

[189]. Therefore mtry was tuned using a range of 1 to the total number of predictors in the dataset.

Number of trees The total number of trees in the RF ensemble presents less of a risk of overfitting

compared to boosting ensembles as they are independently grown and aggregated [106]. It is

generally recommended to include p × 10 trees, where p is the number of predictors, in the tuning

range [106]. Therefore the default hyperparameter range of between 1 and 2000 trees was again

used.

Minimum node size Similar to XGBoost, minimum node size defines the minimum number

of examples in a node before further splits thereby controlling the complexity of the model [190].

Generally, the default value for classification is 1 to obtain adequate performance [143] therefore,

the default range of 2 to 40 was extended to include 1 at the lower bound for tuning.

2.6 Stacking ensemble

Ensemble methods such as those used in XGBoost and RF algorithms can be used to combine base

learners and their individual predictions into a meta-learner that provides a single prediction [191].

The predictive performance of the ensemble model often outperforms any of the individual base-

learners [192, 193]. Stacking was one of the first established ensemble methods [194], and provides

a way to combine many different model types as base learners into a new meta-learning algorithm

[195].
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The stacking ensemble was implemented using the stacks package [196]. In accordance with stack-

ing methodology, the stacking model included four model definitions; MLP, SVM, XGBoost and

RF in order to compare the ensemble performance against each individual method. Candidate

base learners were models derived from the race tuning process for each method using k-fold cross-

validation therefore the stacking model was established using four different types of model and

different hyperparameter configurations of each [197].

Out-of-sample predictions from k-fold cross-validation were used for all candidate base learners

along with the observed stroke outcome in order to construct the stacking model [197]. As this was

a binary classification problem, a regularised generalised linear model (logistic regression) was used

as a meta-learner to combine these predictions from the candidates and generate non-negative co-

efficients for each [195]. A lasso penalty was used for regularisation which helps identify correlation

between candidates in order to remove them from the ensemble [198]. The stacking coefficients arise

from this training process and provide a method of weighting the predictions from each candidate;

only non-zero candidate base learners were included in the stacking model [197].

The resulting base learners were then fit to the entire training dataset generating the final stacked

model which could then be used on the test dataset to obtain final performance metrics.

2.7 Model selection

2.7.1 Evaluation metrics

Many metrics can be used to evaluate binary classifiers and often these are based on a 2x2 confu-

sion matrix which is used to establish predictive performance and quantify the types of errors the

model produces [199]. In the context of the current project, those patients that have had a stroke

occurrence are considered to be the class of interest i.e. the ‘positive’ class. Therefore, a type I error

(false positive (FP)) represents the number of patients who were misclassified as having a stroke

occurrence when they in fact did not. A type II error (false negative (FN)) represents the number
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of patients who were misclassified as not having had a stroke occurrence but actually did.

In imbalanced classification problems such as the prediction of stroke occurrence where there are

many fewer positive than negative observations, certain metrics such as accuracy can be misleading;

this is known as the accuracy paradox [200]. Accuracy is the proportion of true positive (TP) and

true negative (TN) samples out of all samples. Therefore, where the positive class is a minority a

high accuracy can be obtained simply by classifying all samples as the negative class [201]. For this

reason, many studies utilise multiple alternative metrics such as precision, recall, F1 and area under

the precision-recall curve (AUPRC) for evaluating performance in imbalanced data classification

problems [53, 54, 202]. AUPRC is particularly useful as it is threshold-independent and uses the

predicted probability of class membership to evaluate the effectiveness of a model in separating

classes across all decision thresholds [203]. Therefore, a combination of these performance metrics

will be calculated during model evaluation and are defined in the following sections.

Precision Precision is the proportion of positive class predictions that were correctly classified,

shown in Equation 1. Precision is defined between 0 and 1.

Precision = TP

TP + FP
(1)

Recall Recall is calculated in the same way as sensitivity which is commonly used in medical

diagnostic testing [204]. It is defined as the proportion of actual positive class samples that were

correctly classified, shown in Equation 2. Recall is defined between 0 and 1.

Recall = TP

TP + FN
(2)

F1 Score F1 score is defined as a combination (harmonic mean) of precision and recall, with a

higher score indicating the classifier performs well both in identifying positive samples and min-

imising type I and type II errors [205], shown in Equation 3. F1 score is defined between 0 and

1.
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F1 = 2 × precision × recall

precision + recall
(3)

Area under precision-recall curve (AUPRC) As opposed to a threshold metric derived from

a confusion matrix, AUPRC is a ranking metric that requires probabilities of class membership to

which varying thresholds can be applied to produce a curve [206]. It calculates the area under the

precision-recall curve (PRC), providing an indication of how well the classifier performs in classifying

the minority class and allowing for comparisons across models [203]. AUPRC is defined between 0

and 1 and with recall on the x-axis and precision on the y-axis it is maximised by the curve reaching

the top right corner of the plot [203]. A baseline AUPRC for a random (naive) classifier can be

given by the proportion of positive cases in the training dataset during model training and test

dataset for final model evaluation [207].

2.7.2 Comparing models and final fit

Models were tuned and optimised using the AUPRC metric and 10-fold cross-validation. Model

selection within each ML method after tuning was guided by selecting the model that provided the

highest AUPRC across the various tuned models. For each ML method, the selected optimal model

was re-fit to cross-validation resamples using the training data and its performance evaluated using

AUPRC.

Precision, recall and F1 score for the optimal model of each ML method were calculated; as the

default decision threshold for binary classification was 0.500 in the tidymodels ecosystem, the

threshold_perf function from the probably package [208] was used to identify the decision thresh-

old at which the F1 score was optimised. This could then be used to report threshold metrics and

compare optimal F1 performance across models.

Final model selection for use on the test dataset was guided by selecting the individual model that

provided the highest AUPRC on the training data across the four different algorithms. All of the
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above metrics were again calculated (and optimal F1 score decision thresholds recalculated) for final

model evaluation on the test set for both the final individual and stacked model. PRCs derived from

the test data were also be compared to illustrate differences across thresholds for the individual and

stacked model. The final evaluation of model performance on the test set demonstrated whether

the model indicated generalisability if performance remained stable or overfitting if a reduction in

performance was observed [130].

2.8 Model interpretation

An important consideration after model selection and evaluation was to explore model interpreta-

tion; explaining why a model produces the predictions it does can help establish which features

contribute to predictions and the impact changes in values of features alter predictions on average

[209]. This is typically more challenging in complex nonlinear models which have historically been

said to be “black-box” methods [210] however, there are now a number of ways to derive model

explanations [211, 212]. Global model explanations were explored in this project using feature

importance to determine influential features [213] and accumulated local effects to decipher how

changing values of continuous features impact predictions on average [39].

2.8.1 Feature importance

Feature importance is a model agnostic method that aims to explain which features are most

influential in the resulting predictions from a model [106]. Permutation-based feature importance

was implemented using the DALEXtra package [214], test data and the final model fit to training

data [127].

The permutation method establishes the importance of each feature by individually permuting or

shuffling the values of the feature to disrupt the relationship to the target variable, before calculating

the change in model performance [215]. A feature is considered important the more permutation

or shuffling of values decreases the performance of the model (i.e greater error) implying the model

was more heavily reliant on this feature in order to make better predictions [215]. Therefore for
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this binary classification problem, a measure of error was defined by subtracting AUPRC from 1 to

remain consistent with metrics used throughout the modelling process.

2.8.2 Accumulated local effects

Accumulated local effects (ALE) combine local model explanations to form a global explanation of

how model predictions change across different intervals of individual features [39]. As opposed to

partial dependence, ALE can provide a more realistic representation by using intervals to isolate

from correlations between features which typically misrepresent how features influence predictions

individually [127]. Accumulated local effects plots were implemented using the DALEXtra package

[214], test data and the final model fit to training data [127]. In classification, the ALE plot shows

the predicted probability of a stroke occurrence under different values for each feature [214].
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3 Results

The following section will present the results for each step of analysis and modelling for the predic-

tion of stroke occurrence as a binary classification problem using ML methods. This will include

findings from data exploration and pre-processing followed by the results of model tuning, evalua-

tion, selection and interpretation. Numeric results will be reported as rounded to 3 decimal places

however proportions will generally be reported as percentages to 1 decimal place.

3.1 Data exploration and preprocessing

The dataset consisted of 4,981 patients of which only 248 (5.0%) had experienced a stroke occur-

rence whilst 4,733 (95.0%) had not. The low event rate for this binary outcome made it suitable

for oversampling in order to address the class imbalance when training the ML classifiers. Over-

sampling using SMOTE was applied across all ML methods only to the training data; within the

10-fold cross-validation process used to evaluate models, oversampling was also exclusively applied

to the training folds and never to the validation folds.

As training data made up 80% of the complete dataset it represented a total of 3,984 patients, of

which 195 (4.9%) had experienced a stroke occurrence. Therefore, the remaining 20% of test data

represented a total of 997 patients, of which 53 (5.3%) had experienced a stroke occurrence. For

the training data, an oversampling ratio of 1 was used in order to generate an additional 3,594

synthetic examples of the stroke minority class to allow for an equal number of examples in each

class ahead of model training. Therefore the training dataset contained 7,578 examples comprised

of 3,789 (50.0%) patients of each class. The default of 5 nearest-neighbours was used within the

SMOTE algorithm in order to generate these new minority class examples [90]. Additional pre-

processing steps such as encoding and normalisation were applied to test and train data for MLP

and SVM methods only whilst XGBoost required encoding of categorical variables. RF required no

additional pre-processing. The following data exploration sections below describe the full dataset

before splitting into training and test datasets and SMOTE application.
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A total of 10 demographic, lifestyle and clinical characteristics of patients were included as fea-

tures; age (years), gender, smoking status, marital status, urban/rural residence, occupation sector,

hypertension, heart disease, average blood glucose (mg/dL) and BMI (kg/m2). These variables

contained no missingness or apparent erroneous values on inspection using descriptive summaries.

Right-skewed distributions were evident for average blood glucose and BMI whilst age demonstrated

a left-skewed distribution (Figure 1). The median (interquartile range (IQR)) average blood glu-

cose was 91.850 (77.230-113.860) mg/dL, 28.100 (23.700-32.600) kg/m2 for BMI and 45 (25-61)

years for age. As these variables were positive a Box-Cox transformation was used to rescale to a

more symmetrical distribution using lambda estimates of -1.060, 0.368 and 0.840 for average blood

glucose, BMI and age respectively (Figure 1). Despite this, a bimodal distribution persisted for

average blood glucose and age after transformation.
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Figure 1: Density plots for the distribution of average blood glucose, BMI and age before (top) and
after (bottom) Box-Cox transformation
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Table 1: Demographic, lifestyle and clinical characteristics of patients within the sample split by stroke occurrence outcome. Age
is displayed in years, average glucose level in milligrams per decilitre and BMI in kilograms per square metre. Summary statistics
are provided for continuous variables including minimum (Min), maximum (Max), median (Med) and interquartile range (IQR),
mean and standard deviation (std), total number of observations (N) and the number of missings (NA). Categorical variables are
presented as ‘number of observations (column proportion as percentage)’

Variable Level Stroke No stroke Total

Female 140 (56.5%) 2767 (58.5%) 2907 (58.4%)Gender Male 108 (43.5%) 1966 (41.5%) 2074 (41.6%)

Min / Max 1.320 / 82.000 0.080 / 82.000 0.080 / 82.000
Med [IQR] 71.000 [59.000;78.000] 43.000 [24.000;60.000] 45.000 [25.000;61.000]
Mean (std) 67.820 (12.671) 42.141 (22.345) 43.420 (22.663)Age

N (NA) 248 (0) 4733 (0) 4981 (0)

No 182 (73.4%) 4320 (91.3%) 4502 (90.4%)Hypertension Yes 66 (26.6%) 413 (8.7%) 479 (9.6%)

No 201 (81.0%) 4505 (95.2%) 4706 (94.5%)Heart disease Yes 47 (19.0%) 228 (4.8%) 275 (5.5%)

No 29 (11.7%) 1672 (35.3%) 1701 (34.1%)Ever married Yes 219 (88.3%) 3061 (64.7%) 3280 (65.9%)

Children 2 (0.8%) 671 (14.2%) 673 (13.5%)
Government 33 (13.3%) 611 (12.9%) 644 (12.9%)
Private 148 (59.7%) 2712 (57.3%) 2860 (57.4%)Work type

Self-employed 65 (26.2%) 739 (15.6%) 804 (16.1%)

Rural 113 (45.6%) 2336 (49.4%) 2449 (49.2%)Residence type Urban 135 (54.4%) 2397 (50.6%) 2532 (50.8%)

Min / Max 56.110 / 271.740 55.120 / 267.760 55.120 / 271.740
Med [IQR] 105.040 [79.573;195.960] 91.450 [77.120;112.620] 91.850 [77.230;113.860]
Mean (std) 132.176 (61.771) 104.569 (43.602) 105.944 (45.075)Avg. glucose level

N (NA) 248 (0) 4733 (0) 4981 (0)

Min / Max 16.900 / 48.900 14.000 / 48.900 14.000 / 48.900
Med [IQR] 29.450 [26.975;32.650] 28.000 [23.500;32.600] 28.100 [23.700;32.600]
Mean (std) 30.187 (5.658) 28.410 (6.834) 28.498 (6.790)BMI

N (NA) 248 (0) 4733 (0) 4981 (0)

Formerly smoked 70 (28.2%) 797 (16.8%) 867 (17.4%)
Never smoked 89 (35.9%) 1749 (37.0%) 1838 (36.9%)
Smokes 42 (16.9%) 734 (15.5%) 776 (15.6%)Smoking status

Unknown 47 (19.0%) 1453 (30.7%) 1500 (30.1%)
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From the totals shown in Table 1 for the full dataset, most patients in this sample were female

(58.4%), did not have hypertension (90.4%) or heart disease (94.5%), have been married (65.9%)

and work in the private sector (57.4%). Most patients had also never smoked (36.9%) however

there was also a large proportion that had an unknown smoking status (30.1%). Residence type

was evenly split between urban and rural. However, the distribution of these features differed for

patients that had experienced a stroke occurrence compared to patients who had not (Table 1).

As shown in the density plots in Figure 2, patients who experienced a stroke tended to be over

40 years old with a higher proportion aged 60 to 80 years, and also more likely to have a higher

average blood glucose level between 150 and 270 mg/dL. These patients were also more likely to be

self-employed and former smokers (Table 1).

Age (Years) Average glucose level (mg/dL)

0 20 40 60 80 50 100 150 200 250

0.000

0.005

0.010

0.015

0.00

0.01

0.02

0.03

0.04

D
en

si
ty Outcome

Stroke

No stroke

Figure 2: Density plots of age (years) and average glucose level (mg/dL) by stroke outcome

Weak correlations were observed between age, BMI and average blood glucose with the strongest

observed between age and BMI (0.374) and age and average glucose level (0.234). This can be

inferred from scatter plots shown in Figure 3 where it appeared BMI generally increased with age

and higher levels of average blood glucose tended to occur in older patients. These plots also
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demonstrated that stroke occurrence is more likely with increasing age across different values of

both BMI and average blood glucose. The low degree of correlation provided confidence that these

features were not redundant and would not introduce instability in the modelling process [67].
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Figure 3: Scatter plots for average glucose level (mg/dL) and BMI (kg/m2) against age (years) by
stroke outcome

3.2 Hyperparameter tuning

The tuning process involved a grid-search using a space-filling design implemented using Latin hy-

percube sampling which generated 50 candidate hyper parameter combinations for each ML method.

Ten-fold cross-validation was used within the racing tuning process with a burn-in of three initial re-

samples to evaluate every set of candidate hyperparameters before excluding those not significantly

different (at a 5% significance level) from the best candidate. For each resample thereafter up to

the full ten folds, candidates continued to be excluded until only the most performant combinations

remained [155]. The baseline AUPRC if a random classifier was used on the cross-validation train-

ing data would be equal to 0.049 as this was the proportion of stroke cases in the training dataset

[207], providing an estimate for model performance comparison across ML methods. For final model

evaluation, the baseline AUPRC would be equal to 0.053 as this was the proportion of stroke cases
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in the test dataset. The values of some hyperparameters are presented in tables and figures on a

transformed scale and will be discussed in terms of this transformation where these are referenced;

the transformer will be identified in parentheses alongside the corresponding hyperparameter in

each figure if applicable. All other references to hyperparameter values can be presumed to be in

their original scale.

3.2.1 Multi-layer perceptron

Of the 50 candidate hyperparameter combinations used, 34 were excluded during the racing process

for MLP leaving 16 best performing candidates based on mean AUPRC. Candidate model perfor-

mance across each resample during the racing process is shown as an example in Figure 4, with

each line representing a unique hyperparameter combination. Models are compared from the third

resample onwards leading to a large number being initially excluded.
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Figure 4: Model performance (AUPRC) for 50 MLP model candidates (hyperparameter combina-
tions) at each subsequent resample during racing tuning

Using mean AUPRC as the performance metric, the tuning results of all 50 candidate models were

examined to establish optimal configurations for the four hyperparameters selected for tuning as
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shown in Figure 5; lighter points indicated poorer combinations whilst only the darkest points

corresponding to resample 10 were retained after the tuning process indicating more successful

combinations.

Dropout rates of 0.7 or more tended to perform poorly, often being excluded early in the race

tuning process whilst transformed values of learning rate below -2 performed the worst (Figure 5).

Classifier performance appeared to vary across the range of 0 to 500 epochs and from 1 to 10 hidden

nodes.

The five best performing hyperparameter combinations are displayed in Table 2 and demonstrated

generally lower dropout rates, higher learning rates and widely varying numbers of epochs and

hidden nodes. The performance of these models were very similar with overlapping AUPRC 95%

confidence intervals (CI), therefore the model with the highest mean AUPRC was selected at 0.208

(95% CI: 0.166, 0.249). This also corresponded to the simplest model with only 1 hidden node

and the lowest number of epochs out of the five best performing models which was favourable in

preventing overfitting [165]. The optimal MLP model was therefore configured with 1 hidden node,

trained for 87 epochs, a transformed learning rate of -1.634 and a dropout rate of 0.187 (Table 2).

Table 2: Five best candidate MLP models and hyperparameter combinations based on AUPRC with
95% confidence interval (CI)

Hidden nodes Dropout Epochs Learning rate (log-10) AUPRC (95% CI)

1 0.187 87 -1.634 0.208 (0.166, 0.249)
9 0.143 123 -1.447 0.195 (0.165, 0.225)
3 0.291 228 -0.878 0.192 (0.155, 0.229)
6 0.100 437 -1.109 0.192 (0.151, 0.233)
2 0.252 270 -1.320 0.190 (0.157, 0.223)

After fitting the optimal configured model to the resampled training data, the mean AUPRC per-

formance on the non-oversampled validation folds was 0.180 (95% CI: 0.149, 0.210) (Table 6). The

model therefore outperforms a random classifier with an AUPRC of 0.049 however demonstrates

insufficiency in balancing precision and recall across all decision thresholds as perfect performance
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Figure 5: MLP hyperparameter values and corresponding performance given by AUPRC for 50
hyperparameter combinations

is given by a AUPRC of 1.

A decision threshold of 0.650 was found to produce an optimal F1 score of 0.255 for this model as

shown in Table 6. At this threshold, recall for this model was higher than precision with 52.3% of

actual positives correctly predicted, whilst only 16.9% of all positive predictions were truly positive

(Table 6). An example of a confusion matrix is shown in Figure 6 and illustrates class predictions

when this threshold was applied using the validation fold predictions from training dataset resam-

ples. Therefore at this decision threshold, the model performance was characterised by almost as

many false negatives as true positives and five times as many false positives than true positives at

this threshold (Figure 6).

3.2.2 Support vector machine

SVM returned fewer candidate hyperparameter combinations from race tuning than MLP with 10

out of 50 remaining by the last resample. The performance of the two hyperparameters selected

for tuning are shown in Figure 7 and provide an insight into the optimal configurations for SVM in
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Figure 6: Confusion matrix for the optimal MLP model using decision threshold of 0.650 on cross-
validation predictions to optimise F1 score

this context. For the cost hyperparameter, the best performance appeared to occur at transformed

values of approximately -5 to -2.5 and 9 to 14 however there was variability with approximately

four models with similar values that performed poorly and were excluded during race tuning. A

transformed value of sigma between -5 and -2.4 appears to be optimal for bringing about the best

performance whilst values greater than approximately -2.4 appear to lead to a large drop in perfor-

mance (Figure 7).

The five best performing combinations are displayed in Table 3 and demonstrated that lower values

of sigma were often in combination with larger values of cost and vice versa; there also did not

appear to be large differences in performance across these combinations suggesting multiple ranges,

particularly of cost, could be used. The performance of these models were again very similar with

overlapping mean AUPRC 95% confidence intervals. Therefore the model with the highest mean

AUPRC was selected at 0.195 (95% CI: 0.167, 0.222) resulting in the optimal SVM model configured

with a transformed cost of -2.743 and a transformed sigma value of -2.448 (Table 3).
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Figure 7: SVM hyperparameter values and corresponding performance metrics for 50 hyperparam-
eter combinations

Table 3: Five best candidate SVM models and hyperparameter combinations based on AUPRC with
95% confidence interval (CI)

Cost (log-2) RBF Sigma (log-10) AUPRC (95% CI)

-2.743 -2.448 0.195 (0.167, 0.222)
9.302 -4.652 0.194 (0.156, 0.233)

12.721 -5.015 0.192 (0.153, 0.230)
-4.283 -2.192 0.191 (0.163, 0.219)
-3.207 -2.599 0.186 (0.159, 0.212)

The optimal SVM model performance was similar to that of MLP after being fit to the resampled

training data with a mean AUPRC of 0.195 (95% CI: 0.167, 0.222), again indicating the model

outperforms a random classifier however is not effective in balancing precision and recall across all

thresholds (Table 6).

A decision threshold of 0.770 was found to produce an optimal F1 score of 0.276 for this model as

shown in Table 6, higher than the point estimate obtained for the MLP model at its corresponding

34



threshold. At a threshold of 0.770, recall was again higher than precision with 48.2% of actual

positives correctly predicted, whilst 19.4% of all positive predictions were truly positive (Table

6). Therefore, as recall was lower than for MLP, the SVM model demonstrated a greater optimal

F1 score due to greater precision but remains characterised by poor prediction of actual stroke

occurrences and a large number of false positives at this threshold.

3.2.3 XGBoost

XGBoost returned the greatest number of candidate hyperparameter combinations from race tuning

out of all ML methods with 20 remaining models by the last resample out of 50. XGBoost had

a total of eight hyperparameters selected for tuning, the most out of all ML methods included in

the analysis. The performance of each hyperparameter is shown in Figure 8. Initial tuning was

implemented using a log10 transformed learning rate with a default lower bound of -10 however the

resulting models produced predicted probabilities of 0.5 for all observations indicating the learning

rate may have been too small given the number of boosting rounds to learn patterns from the

data. This was improved by increasing the lower bound of the learning rate range to -4 ahead of

subsequent tuning.

Increasing values of learning rate tended to improve performance (Figure 8). A weak negative

relationship was observed between performance and an increasing number of randomly sampled

predictors (mtry) however there was greater variability between 7 to 9 predictors with the highest

end-of-race performance observed at a value of 8 (Figure 8). A more subtle negative relationship

between performance and increasing numbers of stopping iterations was observed with the optimal

range between 5 and 10 which could prevent the algorithm being stopped too early [185]. Model

performance was relatively stable across the full tuning range of 1 to 2000 trees except poorer per-

formance observed for 750 to 1000 trees.

A weak positive relationship was observed in performance as loss reduction increased; a higher de-

gree of regularisation tended to perform best with transformed values greater than -5 demonstrating
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the optimum (Figure 8). A large amount of variability in performance was observed with increasing

minimum node size however values greater than 30 appeared to perform best. The proportion of

training examples subsampled demonstrated relatively stable performance between approximately

50.0% to 75.0% after which there was an evident decline. A tree depth of 5 performed best and

generally depths of 6 splits or more were associated with inferior performance.

The five best performing combinations are displayed in Table 4 and demonstrated generally higher

mtry, greater than 1000 trees, a minimum node size of greater than 30, a tree depth of 5 or less,

higher learning rates, higher loss reduction, lower sample size proportion and varying numbers of

stopping iterations. The performance of these models were again very similar with overlapping

mean AUPRC 95% confidence intervals therefore the simplest model given by the one with the

fewest trees was selected demonstrating a mean AUPRC of 0.186 (95% CI: 0.143, 0.228). The op-

timal XGBoost model was therefore configured with an mtry of 7, 322 trees, minimum node size of

38, tree depth of 3 splits, transformed learning rate of -0.724, transformed loss reduction of -7.600,

sample size proportion of 78.2% and 20 stopping iterations (Table 4).

Table 4: Five best candidate XGBoost models and hyperparameter combinations based on AUPRC
with 95% confidence interval (CI). mtry = the number of randomly selected predictors, Min n =
minimum node size, Depth = tree depth, L.rate = learning rate, L.red = loss reduction, N = sample
size, Iter = stop iterations

mtry Trees Min n Depth L.rate (log-10) L.red (log-10) N Iter AUPRC (95% CI)

8 1091 35 5 -1.321 -4.818 0.592 7 0.192 (0.151, 0.233)
8 1667 36 7 -1.379 0.562 0.691 10 0.188 (0.147, 0.230)
3 1614 32 3 -1.611 -1.460 0.744 9 0.186 (0.150, 0.222)
7 322 38 3 -0.724 -7.599 0.782 20 0.186 (0.143, 0.228)
8 1241 40 5 -2.169 -2.103 0.635 17 0.185 (0.146, 0.224)

The optimal XGBoost model performed simlarly to MLP and SVM; after being fit to the resampled

training data it demonstrated a lower mean AUPRC of 0.176 (95% CI: 0.130, 0.221) but still had

overlapping performance with the aforementioned optimal models given by the wide 95% confidence

36



Learning Rate (log−10) mtry Stop Iterations Trees

A
U

P
R

C

−4 −3 −2 −1 2.5 5.0 7.5 10.0 5 10 15 20 0 500 1000 1500 2000

0.16

0.18

0.20

Resamples 4 6 8 10

Loss Reduction (log−10) Min n Sample Size Tree Depth

A
U

P
R

C

−10.0−7.5 −5.0 −2.5 0.0 10 20 30 40 0.5 0.6 0.7 0.8 4 8 12

0.16

0.18

0.20

Figure 8: XGBoost hyperparameter values and corresponding performance metrics for 50 hyperpa-
rameter combinations

interval (Table 6).

The optimal F1 score was 0.240 (Table 6) and found to occur at a much lower decision threshold of

0.180 compared to both MLP and SVM. The optimal F1 score was lower than the point estimates

obtained from MLP and SVM corresponding to a lower recall with 41.5% of actual positives correctly

predicted, whilst precision was similar to MLP with 16.9% of all positive predictions truly positive

(Table 6). Therefore, the XGBoost model demonstrated a lower F1 score due to lower recall at its

corresponding optimal F1 threshold and therefore poorer prediction of actual stroke occurrences at

this threshold.
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3.2.4 Random forest

RF returned the fewest candidate hyperparameter combinations from race tuning out of all ML

methods with only 1 remaining model out of 50; most models were excluded immediately at the

third resample followed by two more at resample four leaving a single candidate model (Figure 9).
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Figure 9: Model performance (AUPRC) for 50 RF model candidates (hyperparameter combinations)
at each subsequent resample during racing tuning

The performance of the three hyperparameters selected for tuning are shown in Figure 10. As

only a single candidate model remained, discussion of optimal hyperparameter ranges will include

omitted configurations where trends of patterns in performance are evident. For example, there ap-

peared to be a strong positive relationship between increasing minimum node size and performance

therefore fewer splits and complexity appeared to improve model performance. A weak negative

relationship was observed between performance and an increasing number of randomly sampled

predictors (mtry) with the highest performance between 1 and 3 predictors and greater variability

in performance between 5 to 10 predictors (Figure 10). Model performance was very varied across

the full tuning range of 1 to 2000 trees however better performing configurations tended to have

fewer than 750 trees.
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The best and only remaining hyperparameter combination is displayed in Table 5 demonstrating

an AUPRC of 0.166 (95% CI: 0.134, 0.197). Therefore the optimal RF model was configured with

1 randomly selected predictor (mtry), 243 trees and a minimum node size of 36 (Table 5).
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Figure 10: RF hyperparameter values and corresponding performance metrics for 50 hyperparameter
combinations

Table 5: Five best candidate RF models and hyperparameter combinations based on AUPRC with
95% confidence interval (CI)

mtry Trees Min n AUPRC (95% CI)

1 243 36 0.166 (0.134, 0.197)

After being fit to the resampled training data, the optimal RF model had the lowest mean AUPRC

of all ML methods at 0.164 (95% CI: 0.132, 0.195) however still demonstrated overlap given by the

wide 95% confidence interval (Table 6).
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Similar to XGBoost, a lower threshold of 0.370 was found to optimise F1 score obtaining a higher

point estimate of 0.248 (Table 6). The optimal F1 score was lower than the point estimates obtained

from MLP and SVM and the model demonstrated the lowest precision of all models at its optimal

F1 threshold with 16.0% of all positive predictions truly positive (Table 6). Despite this, recall

was higher than for all other models with 54.4% of actual positives correctly predicted (Table 6).

Therefore, although the RF model demonstrated greater recall, as with the all the models selected,

it remains characterised by poor prediction of actual stroke occurrences and a large number of false

positives at this threshold.

3.3 Stacking ensemble

A stacking model was constructed using all candidate models that remained after the race tuning

process for all four model definitions; MLP, SVM, XGBoost and RF. The ensemble was therefore

initialised with 47 candidate learners; 16 MLP configurations, 10 SVM configurations, 20 XGBoost

configurations and 1 RF configuration. The out-of-sample predictions from 10-fold cross-validation

for all candidates were passed to a regularised generalised linear model (logistic regression) as a

meta-learner.

A lasso penalty of 0.01 was selected from a range of 0.0001 to 0.1 by the stacking algorithm to

maximise the AUPRC performance and minimise the number of candidate members. The stacking

algorithm then combined predictions and generated coefficients for each candidate learner. Out of

a possible 47 candidates only 4 were retained by the stacking model including two SVM models,

one XGBoost model and one MLP model, each with a non-zero coefficient as shown in Figure 11.

The SVM models had the largest coefficients at 1.570 and 1.260 and therefore made the greatest

contribution to stacking predictions, followed by the XGBoost model (1.130) and the MLP model

which had a much lower weighting (0.286).

The stacked model was evaluated using the resulting predictions from aggregating the base learner
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Figure 11: Stacked model coefficients for four base learner models using a lasso penalty of 0.01

out-of-sample predictions in the training set, therefore only a point estimate for performance was

obtained. The ensemble demonstrated very similar performance to the optimal individual ML

models with an AUPRC of 0.184 indicating it was better than a random classifier but also not

effective in balancing precision and recall across decision thresholds (Table 6).

A much lower decision threshold of 0.100 was used to optimise F1 score compared to any of the

individual ML models, obtaining a slightly higher F1 score of 0.282 (Table 6). At its optimal F1 score

threshold, recall was higher than for any individual model with 62.6% of actual positives correctly

predicted whilst precision was lower than that for SVM with 18.2% of all positive predictions truly

positive (Table 6). Therefore, the stacked models performance was not dissimilar to the individual

base learner models and similarly is characterised by relatively poor prediction of actual stroke

occurrences and a high proportion of false positives at the optimal F1 threshold.
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3.4 Final model selection and evaluation

After optimally tuned models were selected for each algorithm they were compared using their

respective mean AUPRC performance on resamples. A summary is shown in Table 6 including the

performance of the stacked model alongside all individual ML models with point estimate metrics

at the F1 optimal threshold for each classifier. All classifiers exceeded the baseline random classifier

performance of 0.049 and there was limited variability in performance across models with overlap

across all 95% confidence intervals for mean AUPRC. Of the individual models, RF had the lowest

mean AUPRC estimate at 0.164 (95% CI: 0.132, 0.195) whilst SVM demonstrated the highest mean

estimate at 0.195 (95% CI: 0.167, 0.222).

The stacked model demonstrated very similar performance with an AUPRC of 0.184 based on out-

of-sample predictions from cross-validation. For the purposes of this analysis, a single base learner

model and the stacked model were evaluated on the test dataset to compare performance. SVM was

selected as the individual model as it obtained the highest mean AUPRC on the training dataset,

however as there was overlap in performance of all models justification could be made for selecting

other models for the final evaluation step.

Table 6: Final performance metrics on the training dataset for each single model from 10 cross-
validation resamples and stacked model from out-of-sample predictions from cross-validation. Mean
AUPRC is shown along with a 95% confidence interval (CI) whilst F1, Recall and Precision are
based on a corresponding decision thresholds found to optimise F1 score. No confidence interval is
provided for the stacked model as it was calculated on aggregated out of sample predictions

Model AUPRC (95% CI) F1 Precision Recall

MLP 0.180 (0.149, 0.210) 0.255 0.169 0.523
SVM 0.195 (0.167, 0.222) 0.276 0.194 0.482
XGBoost 0.176 (0.130, 0.221) 0.240 0.169 0.415
RF 0.164 (0.132, 0.195) 0.248 0.160 0.544
Stacked 0.184 0.282 0.182 0.626

Therefore the SVM model and the stacked model were fit to the test dataset to obtain estimates

of performance on unseen data. The results are shown in Table 7 and highlight almost identical

performance between both models with an AUPRC of 0.180 and 0.176 for SVM and the stacked
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model respectively. The optimal F1 scores were based on a threshold of 0.740 and 0.130 for the SVM

and stacked model respectively (Table 7), and again highlight the similarity between models; F1

score is very similar however SVM presented slightly greater recall and reduced precision compared

to the stacked model at their respective thresholds. This is also illustrated in the confusion ma-

trices shown in Figure 12 where SVM demonstrates marginally more true positives and fewer false

negatives at the cost of more false positives for patients in the test set at each models respective

decision threshold to optimise F1 score.

Table 7: SVM and stacked model performance on the test dataset. AUPRC is shown whilst F1,
Recall and Precision are based on decision thresholds of 0.740 and 0.130 for the SVM and stacked
model respectively, found to optimise F1 score

Model AUPRC F1 score Precision Recall

SVM 0.180 0.297 0.204 0.547
Stacked 0.176 0.304 0.220 0.491
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Figure 12: (Left) Confusion matrix for the final SVM model using decision threshold of 0.740 and
(Right) final stacked model using decision threshold of 0.130 on test dataset predictions to optimise
F1 score

The results obtained confirmed the models performed better than random in predicting stroke

occurrence with AUPRC exceeding 0.053 obtained from the proportion of patients that had expe-
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rienced a stroke in the test dataset. However, low AUPRC for both models indicated insufficiency

in balancing precision and recall across all decision thresholds as illustrated in the PRCs with both

models demonstrating a similar pattern (Figure 13). A well-performing model would demonstrate

curves close to the top right corner of the plot, indicating a AUPRC of close to 1 (Figure 13).
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Figure 13: Precision recall curves (PRC) for SVM and stacked model on the test dataset

The stacked model demonstrated a slight decrease in AUPRC performance on the test set which

could suggest potential overfitting to the training data leading to a decline in performance on

unseen data, however the performance of SVM appeared more robust [216]. Therefore, the final

model selected for model interpretation was the SVM model as it demonstrated no evidence of

overfitting on the test dataset.
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3.5 Model interpretation plots

3.5.1 Feature importance

After selecting SVM as the best performing model, permutation-based feature importance was

applied using the test dataset across 100 permutations for each feature. The resulting feature

importance plot is shown in Figure 14 and shows the mean loss in 1-AUPRC after permuting

each feature given by the length of each bar and a box plot for its associated variability over 100

permutations. The vertical dashed line corresponds to the baseline loss function value of 0.820

1-AUPRC for the full model on the test data (Figure 14).

The plot indicates the most important variable in the models predictions for stroke occurrence was

patient age with a mean 1-AUPRC loss of 0.925 (Figure 14). Age, average glucose level, hypertension

and heart disease demonstrated most variability in mean loss across the 100 permutations, however

all except age cross the baseline loss performance line indicating they are not considered important

features for predictions in this model. Similarly, all other variables mean loss distributions cross the

baselines loss value indicating that the final SVM model relies on age as the only important feature

for predicting stroke occurrence.

3.5.2 Accumulated local effects

The effect of different values of each feature without the influence of other correlated features on

the predicted probability of stroke occurrence was demonstrated using ALE plots. The effect of

age is shown in Figure 15; the average predicted stroke probability followed a positive curvilinear

relationship with increasing age. The predicted stroke probability was generally low on average up

to the age of 20 before increasing rapidly up to the age 40 beyond which it increases linearly up

to the age of 80. The ALE plot for age demonstrated the highest predicted stroke probabilities

observed across all features predominantly for those aged approximately 55 and over on average.

Increasing values of average blood glucose between 50 and 125 mg/dL were associated with sharply
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Figure 14: Feature importance plot for the final SVM model based on 100 permutations of each
feature against the mean 1-AUPRC loss

increasing predicted stroke probability of 10% on average (Figure 15). Beyond this, predicted stroke

risk continued to increase more gradually over 125 mg/dL to 275 mg/dL by a further 5% on average.

The predicted stroke probability appeared to remain relatively level with increasing BMI on average

although there appears to be a slight peak at a BMI of 30 kg/m2 (Figure 15).

ALE plots for the categorical features are presented in Figure 16. The average predicted probabilities

of stroke for each isolated feature were generally low with the highest occurring for the presence of

heart disease and hypertension. The presence of heart disease and hypertension compared to no

disease demonstrated the greatest increases in average predicted probability of stroke with smaller

effects observed for having been married and urban residential types (Figure 16). Lower predicted

probabilities occurred on average for patients with government jobs whilst children and the self-

employed had slightly higher predicted stroke probability. Similarly, having never smoked and those

with unknown smoking status had lower predicted stroke probability on average whilst former and

current smokers had a higher predicted probability (Figure 16).
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Figure 15: Accumulated local effects (ALE) plot for continuous features using the test dataset and
the final SVM model
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Figure 16: Accumulated local effects (ALE) plot for categorical features using the test dataset and
the final SVM model
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4 Discussion

The increasing health and economic burden of stroke [8], particularly in LMICs [6], is a global public

health priority [9] and poses a significant challenge for high-risk strategy primary prevention [31, 32]

via early identification of those at risk. Predicting stroke from risk factors using readily available

patient-level information has already demonstrated promising results [30, 41] with recent attempts

to build on conventional statistical regression-based models using machine learning methods [36].

Using a highly imbalanced open-access dataset [60], this project aimed to compare four ML algo-

rithms and a stacking model in the prediction of stroke as a binary classification problem from ten

demographic, lifestyle and clinical features. Multilayer perceptron (MLP), support vector machine

(SVM), gradient boosted decision trees (XGBoost) and random forest (RF) models were optimised

using hyperparameter tuning before comparing performance individually and with a stacking en-

semble that enlisted MLP, SVM and XGBoost as base learners. From this training process the final

single model was selected alongside the stacking model and both were applied to the test data for

final model evaluation.

There was overlap in predictive performance on training resamples across all models (Table 6)

therefore model selection was guided by the single model that obtained the greatest mean AUPRC

estimate. Therefore, SVM was selected however it is likely other models could have been used

with comparable success on the final test dataset. The overlap in performance included the stacked

model which is contrary to the established literature using these methods on the same dataset [53].

Stacking has previously been shown to outperform its component base learners; Dritsas and Trigka[54]

found a stacking model with a logistic regression meta-learner comprised of four different base learn-

ers demonstrated superior performance in stroke prediction to single models across seven different

algorithms including MLP and RF. Similarly, Hassan et al[55] compared 10 single ML algorithms

(including MLP, XGBoost and RF) to a stacking ensemble with a RF meta-learner and the remain-
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ing 9 models as base learners and found it outperformed all individual classifiers.

Stacking is typically optimised when base-learners are diverse in their structure and perform well

individually [52]. In this project a combination of model structures were utilised including artificial

neural network, maximal-margin and tree-based methods however very few candidate models were

retained during training indicating many had correlated predictions and therefore presented a lack

of diversity in the ensemble [198]. This is also reflected in the dominance of SVM amongst the base-

learners with both models demonstrating the greatest weightings out of the four models included

in the stack (Figure 11). It is perhaps then not surprising that the stacked model demonstrated a

performance similar to SVM both in training and final evaluation using the test dataset (Table 7).

Previous studies comparing single ML model performance in stroke prediction on the same dataset

have typically found superior predictive ability for RF or SVM compared to MLP and XGBoost

[42–44, 48, 50]. This is inconsistent with the present findings; all single models demonstrated over-

lapping 95% confidence intervals for mean AUPRC estimates from training resamples indicating

performance was relatively similar across all four ML methods. This may be due to methodological

differences or varying evaluation metrics to quantify and compare performance.

The metrics used for comparison within the established literature often include accuracy, precision,

recall and F1 score without a specified decision threshold [42–45] alongside area under the receiver

operating curve (AUROC) [46, 48, 50, 53–55]. In highly imbalanced binary classification problems

where there is great importance in detecting rare events AUROC can be misleading as it incorpo-

rates the larger number of true negatives (i.e. the majority class) in its calculation whilst AUPRC

does not [203, 207]. To the authors knowledge, there were no studies found that enlisted the same

dataset for stroke prediction and used AUPRC for model evaluation therefore comparison to the

literature is limited to threshold-sensitive metrics such as F1, precision and recall. According to

the accuracy paradox, using accuracy for the evaluation of highly imbalanced datasets can also be

misleading as high values can be obtained just by classifying all examples as the majority class [200].
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All four algorithms and the stacked ensemble within this project produced models that demon-

strated superior performance to a random classifier based on an AUPRC of 0.049 given by the

proportion of patients that experienced stroke in the training dataset [207]. Final model perfor-

mance for SVM and the stacked model on the test dataset demonstrated similar AUPRC to that

observed from training at 0.180 and 0.176 respectively (Table 7) compared to a random classifier

baseline of 0.053 on the test dataset. A slight decrease in performance for the stacked model may

indicate a degree of overfitting occurred on the training data translating to poorer generalisability

to unseen data [216].

As ideal model performance would yield an AUPRC close to 1 and present a PRC close to the upper

right corner of the plot [203], the AUPRC and PRCs derived (Figure 13) suggest the final models

fail to adequately balance precision and recall across all decision thresholds. This is reflected in the

test set class predictions at a threshold that optimised F1 score where both SVM and the stacked

model, with F1 scores of 0.297 and 0.304 respectively, led to high numbers of false positives and false

negatives (Figure 12). This indicates these models may have severe limitations in their practical

application at these thresholds as approximately half of those patients that went on to experience a

stroke occurrence failed to be predicted and almost four times as many were incorrectly predicted

to have a stroke as were correctly predicted in both models.

The appropriate decision threshold for use in deployment settings is context-dependent and decided

upon consideration of false-positive and false-negative associated costs [217]. However, the clinical

utility of these models for use in a predictive capacity is likely compromised due to the persistently

low precision observed across all values of recall as indicated by the relatively flat PRCs (Figure

13). Therefore whilst increased recall may lead to fewer patients at risk of stroke being missed, the

large number of false positives presents the issue of unnecessary follow-up medical examination or

treatment for most patients predicted as at risk [218]. This trade-off would likely impact the utility

of these models particularly in LMICs where a low precision model may represent an ineffective
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allocation of often restricted resources [10].

Based on threshold metrics such as F1, precision and recall, final SVM and stacked model perfor-

mance was markedly poor compared to that found in the literature using this dataset for stroke

prediction; Hassan et al[55] found an F1 score of 0.949 for a stacking ensemble following on from

previous studies that demonstrated exceptional F1 performance of 0.974 [54] and even 1.000 [53]

using similar stacking methods. Even for single models, Rehman et al[53] achieved an F1 score,

precision and recall of 0.630 for an SVM model, far exceeding that found for the final SVM model

within the current project. Although decision thresholds were not specified in any of the aforemen-

tioned studies, these performance estimates were much higher than the optimal F1 score obtained

for both SVM and stacked models on final evaluation (Table 7) indicating superior performance.

The stark difference in predictive performance may be attributed to a fundamental methodological

oversampling flaw in many previous studies using this dataset that has been discovered in other

clinical domains [219]. Oversampling of the minority stroke class using SMOTE was employed

within this project and has been extensively used throughout the stroke prediction literature to

overcome limitations of highly imbalanced data and improve predictive performance [35]. For the

purposes of this analysis SMOTE was exclusively applied to training data after partitioning into

mutually exclusive training and test datasets. Within k-fold cross-validation using the training

dataset, SMOTE was also only applied to the data used for training and the sampling routine was

never applied to the data used for predictions (i.e. the validation fold) for each resample [91].

This is inconsistent with the implementation of SMOTE within the literature; Rehman et al[53]

applied oversampling of the minority stroke class with a non-specified ratio to the entire dataset

before partitioning into a training and test dataset. Similarly, Dritsas and Trigka[54] specified

that final model assessment was completed using ten-fold cross-validation on the SMOTE-balanced

dataset. Ghosh, Dasgupta and Swetapadma[115] initially performed the partitioning of data before

applying SMOTE to both the training and test datsets with an oversampling ratio of 1 resulting in
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an equal number of patients within each binary stroke class. This methodological step of applying

oversampling to validation datasets is described within many other studies using this open-access

dataset for stroke prediction [44–46, 48–50, 202, 220, 221].

Hassan et al[55] also applied SMOTE before partitioning the dataset into training and test datasets

however additionally explored the modelling and evaluation process in the absence of oversampling.

Logistic regression performed best according to accuracy on the imbalanced (non-oversampled) test

data alongside an F1 score of 0.230 corresponding to a precision of 0.870 and recall of 0.132. This

is also consistent with the findings of Srinivasu et al[222] who found using a SVM model without

oversampling the validation data resulted in an F1 score of 0.192 corresponding to a precision of

0.140 and a recall of 0.302. Although a decision threshold is not specified in these studies and

therefore may not have been optimised for F1 score, these results are comparable to those observed

in this present project.

This highlights a pervasive methodological flaw throughout much of the literature on stroke pre-

diction using this dataset; previous studies using supervised ML approaches in a clinical context

have found the incorrect application of oversampling in this way can lead to artificially inflated

performance estimates [71, 219]. Whilst training data is used for model tuning and evaluation for

final model selection, the test dataset is ‘unseen’ data created in order to provide an indication of

model generalizability to real-world scenarios and evaluate final model performance [70]. The class

distribution should therefore closely represent the real-world distribution in which the model will

be applied in order to obtain unbiased estimates of future performance [147]. Oversampling the val-

idation datasets therefore contaminates the evaluation process resulting potentially over-optimistic

results as the underlying distribution of stroke occurrences is not represented [223].

The disparity in model performance observed compared to that in the literature is also reflected in

model interpretation. As the stacked model indicated a degree of overfitting due to a decline in per-

formance on the test dataset, only SVM was considered for model interpretation. Permutation-based
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feature importance suggested the age of the patient was the only important feature for predictions

made by the final SVM model on the test dataset [127] using mean loss in AUPRC as the impor-

tance metric (Figure 14). This is contrary to the permutation feature importance findings of Islam

and Ghosh[44] who found all ten features showed importance with average glucose level, BMI and

age as the top three using a random forest model. However, permutation feature importance was

conducted on oversampled validation data, importance was measured by mean accuracy loss and

confidence intervals were not provided for importance estimates making direct comparisons chal-

lenging.

Hassan et al[55] compared feature importance for a stacking ensemble between imbalanced and bal-

anced datasets however the loss metric was not specified. Consistent with previous studies [44], age,

average glucose level and BMI were the three most important features whilst all other features had

minimal contribution to model predictions. In the balanced dataset age had the greatest influence

however this was superseded by average blood glucose in the imbalanced dataset. Importance of

all features was attenuated in the imbalanced dataset [55] suggesting oversampling in this instance

may artificially inflate importance estimates.

Despite this, these findings are consistent with that found using an SVM model and correct imple-

mentation of oversampling via SMOTE; Srinivasu et al[222] found average glucose level, age and

to a lesser degree BMI most contributed to model predictions using mean AUROC loss whilst all

other features were unimportant. Therefore, it is likely the contribution of features to predictions

may depend on the metric used to evaluate the loss from permutation, explaining the differences

observed.

Nonetheless, the importance of age in the predicted risk of stroke is consistent with the literature

and is widely accepted as a primary non-modifiable risk factor [224]. As stroke incidence is known

to increase with age [23] it may not be surprising that the predicted stroke risk from the SVM model

tended to increase as patient age increased on average (Figure 15). This is in line with the findings
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of Kokkotis et al[218] who implemented subsampling exclusively to the training data and used par-

tial dependence plots (PDPs) with Shapley values for an MLP model. They found a similar strong

positive monotonic relationship between age and the predicted probability of stroke, reaffirming the

importance of this feature in predicting stroke within this dataset. Longitudinal studies suggest

stroke incidence doubles with each decade beyond the age of 55 [21, 24]; the predicted risk of stroke

in the SVM model appears to increase at its highest rate linearly from approximately 50 years to

80 years of age on average.

A slight increase in predicted risk of stroke was observed with increasing average blood glucose

specifically at the low end of the range within this dataset from 50 mg/dL to 125 mg/dL on av-

erage, however predicted risk quickly levels off beyond this concentration (Figure 15). This is an

interesting finding as a fasting (8-hour) blood glucose greater than 126 mg/dL has been recom-

mended for the diagnosis of diabetes [225–227], which greatly increases the risk of stroke [228].

In contrast, increasing values of BMI appeared to demonstrate no real effect on predicted stroke

risk for the SVM model. This is contrary to the literature where PDPs demonstrated a strong

negative monotonic relationship between BMI and stroke risk [218]. However, PDPs do not provide

a realistic explanation as they are influenced by correlated features [127]; a limitation that ALE

overcomes [39]. As the strongest correlation observed during exploratory analysis was between age

and BMI (Figure 3) the PDP may misrepresent how BMI influences predicted stroke risk whilst

the ALE plot demonstrates little impact. It is also worth noting Kokkotis et al[218] used a dataset

of 43,000 patients which is no longer publicly available and from which the present dataset was

derived, therefore the differences between ALE and PDP plots may also be attributed to varying

distributional properties of the dataset.

Categorical features showed little to no effect on predicted probability of stroke when isolated, re-

flected in the ALE plots (Figure 16) with the greatest increases for those with heart disease and

hypertension compared to no disease on average. The small effect of these features is somewhat
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surprising as stroke incidence is known to be 2-4 times greater for those with heart disease [229]

and hypertension has been identified as the top risk factor according to GBD estimates [6] and the

INTERSTROKE study [7]. However, the ALE plots are specific to the SVM model and dataset

therefore the lack of utility in categorical features for stroke prediction is likely due to the models

inability to reflect the data-generating process as opposed to those factors intrinsic contribution to

real stroke risk [230].

4.1 Strengths and limitations

There are further limitations to this analysis that are specific to the pre-processed open-access

dataset used [60]. Very little information is available pertaining to the source of the data, how

it was collected and for its intended purpose. The outcome for the purposes of this analysis was

a binary stroke variable however it is not clear whether this was the motivation for initial data

collection. The study design was not specified however it is common for longitudinal approaches

to be used within medical applications for the prediction of an event, such as stroke, at a specific

point in time or prediction window [231]. In a systematic review that included 16 studies using the

same open-access stroke dataset, the authors concluded information was collected according to a

retrospective cohort design however recognised the absence of time-to-event data [36]. Therefore,

this project assumed stroke occurrence was a static outcome at an undefined timepoint, and it is

recommended future studies include follow-up time information for real-world application [36, 232].

Limitations in generalisability of the present findings may also arise as the sampling method for

patients is also not specified; some evidence suggests using electronic health record data in retro-

spective cohort studies can lead to bias in the selection of patients with generally poorer health [233].

Similarly, as eligibility criteria was not specified for inclusion in the study and subsequent dataset

it is unclear the specific population these results are applicable to [234], limiting generalisability.

Precise definitions were not provided for most features within the present dataset. For example age

was not defined at a specific time point and was therefore assumed to be collected at the undefined

55



end time point [235]. Similarly average blood glucose was not defined over a time point or specified

as fasting or non-fasting therefore it was assumed to represent average fasting blood glucose [236]

over the undefined study period. The model did not include other biochemical features such as

serum folate and neutrophils which have also been shown to predict stroke risk [237, 238]. Previ-

ous stroke occurrence is an established predictor of secondary stroke [239] therefore this should be

considered as an additional feature when predicting stroke risk using electronic health records. The

presence of lifestyle factors such as smoking status, occupation, residential area and martial status

are assumed to be self-reported which can make them vulnerable to recall and response biases that

can render the data unreliable [240]. For example, whilst smoking status is an important predictor

of stroke risk [241] the high number of patients with an unknown smoking status in the present

dataset may reflect response bias to avoid social judgement in a clinical context [242].

Strengths of this project include the methodologically sound application of oversampling via SMOTE

as to avoid overoptimistic performance estimates [219]. Evidence was provided to highlight that this

experimental flaw was widespread throughout much of the literature utilising the present dataset for

the prediction of stroke occurrence, even in prestigious peer-reviewed journals [55]. To the authors

knowledge, this project presents the first correct application of SMOTE to this specific open-access

dataset and therefore may represent a more realistic assessment of model performance [71, 223].

Future work using this dataset should include a direct comparison of oversampling applied before

and after partitioning into training and test sets which may provide insight into the extent this

flawed evaluation methodology impacts model generalisability and real-world application [219].

Contrary to the established literature, the models within the present project were optimised and

evaluated primarily using AUPRC which has been recommended as a metric for rare outcomes such

as stroke in a recent systematic review on stroke prediction using ML methods [36]. Simulation

studies have demonstrated that the commonly used AUROC can lead to overoptimistic performance

estimates compared to AUPRC for low prevalence disease prediction using ML methods [243]. Al-

though oversampling was applied in training the models, validation sets remained highly imbalanced
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and therefore the use of AURPC more directly captured the ability of models in identifying the

stroke group and therefore better reflects the discriminant performance of models in this context

[207].

Very few studies in the literature using this dataset for the prediction of stroke investigated model

interpretability [44, 55, 222]. To the authors knowledge, this project was the first to include ALE

plots for investigating the impact of varying values of features on predicted stroke risk. Building

on previous studies that utilised LDPs [222], ALE plots provided a more realistic interpretation of

the individual contribution of features independent from correlated features [39, 230].

5 Conclusion

With a globally increasing stroke burden, successfully predicting stroke risk from routinely collected

data presents an opportunity for early intervention particularly in resource-limited countries. This

project employed MLP, SVM, XGBoost and RF machine learning algorithms and a stacking model

to predict stroke occurrence as a binary classification problem. Oversampling techniques were imple-

mented on a highly imbalanced open-access dataset containing demographic, lifestyle and medical

features. All models demonstrated similar performance including the stacking ensemble which pre-

sented a lack of structural diversity. Final SVM model performance remained superior to a random

classifier however illustrated consistently high numbers of false positives, with age as the primary

contributor to increasing predicted stroke risk. A pervasive methodological flaw in oversampling

implementation was identified within the established literature and discussed as an explanation for

discordant findings. ML approaches have promising applications in predicting stroke occurrence us-

ing routinely collected data however model development guided by robust methodological practices

is of critical importance to ensure generalisability and prevent harm.
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